Data release for candidate event LVT151012

This page has been prepared by the LIGO Scientific Collaboration (LSC) and the Virgo Collaboration to inform the broader community about a candidate astrophysical event observed by the gravitational-wave detectors, and to make the data around that time available for others to analyze.

The candidate event occurred at GPS time 1128678900.44 == October 12, 2015 at 09:54:43.44 UTC. It was recovered with a network signal-to-noise ratio of 9.7 and a significance of 1.7 sigma. The candidate event was detected in data from the LIGO Hanford and LIGO Livingston observatories.

  • This page serves as a supplement to the paper "Binary Black Hole Mergers in the first Advanced LIGO Observing Run" which is available from LIGO DCC.
  • There is more open data about this event, in the files attached to the above paper in the LIGO DCC.
  • There are Science Summaries, covering the information below in ordinary language.
  • This dataset has the Digital Object Identifier (doi) https://doi.org/10.7935/K5CC0XMZ
  • There are tutorials to work with the strain data.
  • There is a technical details page about the data linked below, and feel free to contact us.

  • Estimated Source Parameters

    QuantityValueUpper/Lower
    error estimate
    Unit
    Primary mass 23 +18 -6 M sun
    Secondary mass 13 +4 -5 M sun
    Chirp mass 15.1 +1.4 -1.1 M sun
    Total mass 37 +13 -4 M sun
    Final mass 35 +14 -4 M sun
    Final spin 0.66 +0.09 -0.10
    Radiated gravitational-wave energy 1.5+0.3 -0.4 M sun c2
    Peak luminosity 3.1 +0.8 -1.8 1056 erg/s
    Luminosity distance 1000 +500 -500 Mpc
    Source redshift z 0.20+0.09 -0.09


    The data from the observatories from which the science is derived:

    Gravitational-Wave Strain Data

    Strain Data at 4096 Hz

    Strain h(t) time series centered at GPS 1128678900,
    HanfordLivingston
    32 seconds
    (event is 16.44 seconds from start)
    hdf5
    gwf
    txt.gz
    hdf5
    gwf
    txt.gz
    4096 seconds
    (event is 2048.44 seconds from start)
    hdf5
    gwf
    txt.gz
    hdf5
    gwf
    txt.gz

    Strain Data at 16384 Hz

    Strain h(t) time series centered at GPS 1128678900,
    HanfordLivingston
    32 seconds
    (event is 16.44 seconds from start)
    hdf5
    gwf
    txt.gz
    hdf5
    gwf
    txt.gz
    4096 seconds
    (event is 2048.44 seconds from start)
    hdf5
    gwf
    txt.gz
    hdf5
    gwf
    txt.gz


    Sky localization

    The pipeline that produced this sky localization information was LALInference. There is an initial version that was sent to follow-up observers, and a final, improved version.

    The skymap can be visualized in astronomical context with the Skymap Viewer:

    The skymaps are represented as HEALPIX-FITS files in equatorial frame, available gzipped:

    A python library for reading such files is healpy. A very simple healpy code to work with LIGO-Virgo skymaps is here. A large number of simulated skymaps is available here and here.

    Audio Files

    These files are derived from the strain data above, through signal processing as defined in the tutorial notebook "Tutorial on Binary Black Hole Signals in LIGO Open Data", that can be found in the tutorials section of this website.


    About the Instruments and Collaborations

    The LIGO Observatory

    The Laser Interferometer Gravitational-Wave Observatory (LIGO) consists of two widely separated installations within the United States — one in Hanford, Washington and the other in Livingston, Louisiana — operated in unison as a single observatory. LIGO is operated by the LIGO Laboratory, a consortium of the California Institute of Technology (Caltech) and the Massachusetts Institute of Technology (MIT). Funded by the National Science Foundation, LIGO is an international resource for both physics and astrophysics.

    The GEO600 Detector

    The GEO600 project aims at the direct detection of gravitational waves by means of a laser interferometer of 600 m armlength located near Hannover, Germany. Besides collecting data for gravitational wave searches, the GEO600 detector has been used to develop and test advanced instrumentation for gravitational wave detection.

    The LIGO Scientific Collaboration

    The LIGO Scientific Collaboration (LSC) is a group of scientists seeking to make the first direct detection of gravitational waves, use them to explore the fundamental physics of gravity, and develop the emerging field of gravitational wave science as a tool of astronomical discovery. The LSC works toward this goal through research on, and development of techniques for, gravitational wave detection, and the development, commissioning and exploitation of gravitational wave detectors. The LSC carries out the science of the LIGO and GEO600 Observatories. Participation in the LSC is open to all interested scientists and engineers from educational and research institutions.


    There is a technical details page about the data linked above, and feel free to contact us.